WARNING
U.S. Federal Law restricts this device to sale by or on the order of a physician.

CareFusion
22745 Savi Ranch Parkway
Yorba Linda, CA 92887
800.231.2466 toll-free
714.283.2228 tel
714.283.8493 fax

CareFusion Germany 234 GmbH
Leibnizstrasse 7
97204 Hoechberg, Germany
+49 931 4972-0 tel
+49 931 4972-423 fax

© 2010 CareFusion Corporation or one of its subsidiaries.
All rights reserved. RC1706 (0910/2500) L3017

carefusion.com
About this handbook

This handbook has been prepared as a reference for healthcare professionals who are interested in capnography. It is divided into the following three sections:

• The clinical need for capnography based on the physiology and pathophysiology of respiration
• Technical aspects of capnography
• Examples and clinical interpretations of CO₂ waveforms

We hope this reference can enhance the use of capnography in the clinical setting.
Physiologic aspects and the need for capnography

Respiration .. 1
Capnography depicts respiration 2
Factors affecting capnographic readings 3
Physiologic factors 5
Equipment-related factors 6
Dead space ... 8
Ventilation-perfusion relationships 9
Normal arterial and end-tidal CO2 values ... 10
Arterial to end-tidal CO2 gradient 11
Display of CO2 data 13
Capnography vs. capnometry 14
Capnography is more than EtCO2 15
Quantitative vs. qualitative EtCO2 16
EtCO2 trend graph and histogram 18

Technical aspects of capnography

CO2 measurement techniques 19
Infrared (IR) absorption 20
Solid state vs. chopper wheel 21
Mainstream vs. sidestream 23
Colorimetric CO2 detectors 24

Capnogram examples and interpretations

Normal capnogram 25
Increasing EtCO2 level 26
Decreasing EtCO2 level 27
Rebreathing ... 28
Obstruction in breathing circuit or airway ... 29
Muscle relaxants (curare cleft) 30
Endotracheal tube in the esophagus 31
Inadequately sealed endotracheal tube 32
Faulty ventilator circuit valve 33
Cardiogenic oscillations 34

Glossary of terms 35

Contents

Respiration
The big picture: The respiratory process consists of three main events:

Cellular metabolism of food into energy—O2 consumption and CO2 production.

Transport of O2 and CO2 between cells and pulmonary capillaries, and diffusion from/into alveoli.

Ventilation between alveoli and atmosphere.
Factors affecting capnographic readings

The factors that may affect capnographic readings can be classified as follows:

Physiologic

Factors which can affect CO\(_2\) production include substrate metabolism, drug therapy and core temperature.

Factors affecting CO\(_2\) transport include cardiac output and pulmonary perfusion.

Factors which can affect ventilation include obstructive and restrictive diseases, and respiratory rate.

Ventilation-perfusion ratios (described on page 9) can also affect capnographic readings.

Note: Of course, oxygenation is a major part of respiration and therefore must also be monitored in order to complete the picture. This may be accomplished through pulse oximetry, which is not covered in this handbook.
Factors affecting capnographic readings (continued)

Equipment

Ventilator settings and malfunctions, tubing obstructions, disconnections and leaks can all affect capnographic readings.

Sampling method and site, sample rate (if sidestream) and monitor (capnograph) malfunctions can affect capnographic readings.

Physiologic factors affecting EtCO₂ levels

Increase in EtCO₂

- Increased muscular activity (shivering)
- Malignant hyperthermia
- Increased cardiac output (during resuscitation)
- Bicarbonate infusion
- Tourniquet release
- Effective drug therapy for bronchospasm
- Decreased minute ventilation
Factors affecting capnographic readings (continued)

Physiologic factors affecting EtCO₂ levels (continued)

Decrease in EtCO₂

- Decreased muscular activity (muscle relaxants)
- Hypothermia
- Decreased cardiac output
- Pulmonary embolism
- Bronchospasm
- Increased minute ventilation

Increase in EtCO₂

- Malfunctioning exhalation valve
- Decreased minute ventilation settings

Decrease in EtCO₂

- Circuit leak or partial obstruction
- Increased minute ventilation settings
- Poor sampling technique
Dead space

Dead space refers to ventilated areas that do not participate in gas exchange. Total, or physiologic, dead space refers to the sum of the three components of dead space as described below:

Total (physiological) dead space =

- **Anatomic dead space** refers to the dead space caused by anatomical structures (the airways leading to the alveoli). These areas are not associated with pulmonary perfusion and therefore do not participate in gas exchange.

- **Alveolar dead space** refers to ventilated areas that are designed for gas exchange (alveoli), but do not actually participate. This can be caused by lack of perfusion due to pulmonary embolism, blockage of gas exchange, cystic fibrosis or other pathologies.

- **Mechanical dead space** refers to external artificial airways and circuits that may add to the total dead space during mechanical ventilation. Mechanical dead space is an extension of anatomic dead space.

Ventilation-perfusion relationships

The ventilation-perfusion ratio (V/Q) describes the relationship between air flow in the alveoli and blood flow in the pulmonary capillaries. If ventilation is perfectly matched to perfusion, then V/Q is 1. However, both ventilation and perfusion are unevenly distributed throughout the normal lung, resulting in the normal overall V/Q being 0.8.

Ventilation-perfusion spectrum

- **Shunt perfusion** occurs under conditions in which alveoli are perfused but not ventilated, such as:
 - Mucus plugging
 - ET tube in mainstream bronchus
 - Atelectasis

- **Dead space ventilation** occurs under conditions in which alveoli are ventilated but not perfused, such as:
 - Pulmonary embolism
 - Hypovolemia
 - Cardiac arrest
Normal arterial and end-tidal CO₂ values

Arterial CO₂ (PaCO₂) from arterial blood gas sample (ABG)

End-tidal CO₂ (EtCO₂) from capnograph

Normal PaCO₂ values:
- 35 to 45 mmHg

Normal EtCO₂ values:
- 30 to 43 mmHg
- 4.0 to 5.7 kPa
- 4.0 to 5.6%

Note: Numbers shown correspond to sea level.

Arterial to end-tidal CO₂ gradient

Under normal physiologic conditions, the difference between arterial PCO₂ (from ABG) and alveolar PCO₂ (EtCO₂ from capnograph) is 2 to 5 mmHg. This difference is termed the PaCO₂—PEtCO₂ gradient or the a—ACO₂ and can be increased by:

- COPD (causing incomplete alveolar emptying)
- ARDS (causing V/Q mismatch)
- A leak in the sampling system or around the ET tube
Arterial to end-tidal CO₂ gradient (continued)

With both healthy and diseased lungs, EtCO₂ can be used to detect trends in PaCO₂, alert the clinician to changes in a patient’s condition and reduce the required number of ABGs.

With **healthy lungs** and normal airway conditions, EtCO₂ provides a reasonable estimate of arterial CO₂ (within 2 to 5 mmHg).

With **diseased/injured lungs**, there is an increased arterial to end-tidal CO₂ gradient due to V/Q mismatch. Related changes in the patient’s condition will be reflected in a widening or narrowing of the gradient, conveying the V/Q imbalance and therefore the pathophysiological state of the lungs.

Display of CO₂ data

CO₂ data can be displayed in a variety of formats. The next few pages briefly describe:

Capnography vs. capnometry
- Definitions
- Capnography is more than EtCO₂

Display formats for end-tidal CO₂
- Quantitative vs. qualitative
- EtCO₂ trend graph and histogram
Capnography vs. capnometry

Definitions

Oftentimes, little or no distinction is made between the terms capnography and capnometry. Below is a brief explanation:

Capnography refers to the comprehensive measurement and display of CO₂ including end-tidal, inspired and the capnogram (real-time CO₂ waveform). A capnograph is a device that measures CO₂ and displays a waveform.

Capnometry refers to the measurement and display of CO₂ in numeric form only. A capnometer is a device that performs such a function, displaying end-tidal and sometimes inspired CO₂.

Capnography is more than EtCO₂

As previously noted, capnography is comprised of CO₂ measurement and display of the capnogram. The capnograph enhances the clinical application of EtCO₂ monitoring.

Value of the capnogram

The capnogram is an extremely valuable clinical tool that can be used in many applications, including, but by no means limited to:

- Validation of reported end-tidal CO₂ values
- Assessment of patient airway integrity
- Assessment of ventilator, breathing circuit and gas sampling integrity
- Verification of proper endotracheal tube placement

Viewing a numerical value for EtCO₂ without its associated capnogram is like viewing the heart rate value from an electrocardiogram without the waveform. End-tidal CO₂ monitors that offer both a measurement of EtCO₂ and a waveform enhance the clinical application of EtCO₂ monitoring. The waveform validates the EtCO₂ numerical value.
Quantitative vs. qualitative EtCO₂

The format for reported end-tidal CO₂ can be classified as quantitative (an actual numeric value) or qualitative (low, medium, high):

Quantitative EtCO₂ values are currently associated with electronic devices and usually can be displayed in units of mmHg, % or kPa. Although not absolutely necessary for some applications, such as verification of proper ET tube placement, quantitative EtCO₂ is needed in order to take advantage of most of the major benefits of CO₂ measurements.

Quantitative CO₂ measurements are associated with a range of EtCO₂ rather than the actual number. Electronic devices usually present this as a bar graph, while colorimetric devices are presented in a percentage range grouped by color. If the ranges are numeric, as is usually the case, it is said to be semiquantitative. These devices are termed CO₂ detectors and their applications are typically limited to ET tube verification.
EtCO₂ trend graph and histogram

The trend graph and histogram of EtCO₂ are convenient ways to clearly review patient data that has been stored in memory. They are especially useful for:

- Reviewing effectiveness of interventions such as drug therapy or changes in ventilator settings
- Noting significant events from periods when the patient was not continuously supervised
- Keeping records of patient data for future reference

An EtCO₂ trend graph is shown for a one hour time period. An EtCO₂ histogram is shown for an eight hour time period. This format shows a statistical distribution of EtCO₂ values recorded during the time period.

Technical aspects of capnography

CO₂ measurement techniques

Various configurations and measurement techniques are currently available in devices that measure CO₂, some of which are briefly described below:

Infrared (IR) absorption

- Principle
- Solid state vs. chopper wheel
- Mainstream vs. sidestream sampling

Colorimetric detectors

- Principle

Other techniques not included in this discussion are mass spectrometry, Raman scattering and gas chromatography.
Infrared (IR) absorption

The infrared absorption technique for monitoring CO₂ has endured and evolved in the clinical setting for more than two decades and remains the most popular and versatile technique today.

Principle
The principle is based on the fact that CO₂ molecules absorb infrared light energy of specific wavelengths, with the amount of energy absorbed being directly related to the CO₂ concentration. When an IR light beam is passed through a gas sample containing CO₂, the electronic signal from a photodetector (which measures the remaining light energy) can be obtained. This signal is then compared to the energy of the IR source, and calibrated to accurately reflect CO₂ concentration in the sample. To calibrate, the photodetector’s response to a known concentration of CO₂ is stored in the monitor’s memory.

Solid state vs. chopper wheel
Since the intensity of the IR light source must be known for a CO₂ measurement to be made, some method must be employed to obtain a signal which makes that correlation. This can be done with or without moving parts.

Solid state CO₂ sensors use a beam splitter to simultaneously measure the IR light at two wavelengths: one that is absorbed by CO₂ (data) and one that is not (reference). Also, the IR light source is electronically pulsed (rather than interrupting the IR beam with a chopper wheel) in order to eliminate effects of changes in electronic components. The major advantage of solid state electronics is durability.
Mainstream vs. sidestream sampling

Mainstream and sidestream sampling refer to the two basic configurations of CO₂ monitors, regarding the position of the actual measurement device (often referred to as “the IR bench”) relative to the source of the gas being sampled.

Mainstream CO₂ sensors allow the inspired and expired gas to pass directly across the IR light path. State-of-the-art technology allows this configuration to be durable, small, lightweight and virtually hassle-free. The major advantages of mainstream sensors are fast response time and elimination of water traps.

Sidestream CO₂ sensors are located away from the airway, requiring the gas sample to be continuously aspirated from the breathing circuit and transported to the sensor by means of a pump.
Normal capnogram

The normal capnogram is a waveform that represents the varying CO₂ level throughout the breath cycle.

Waveform characteristics:

A–B Baseline
B–C Expiratory upstroke
C–D Expiratory plateau
D–E Inspiration
D End–tidal concentration

Colorimetric CO₂ detectors

Principle
Colorimetric CO₂ detectors rely on a modified form of litmus paper, which changes color relative to the hydrogen ion concentration (pH) present.

Colorimetric CO₂ detectors actually measure the pH of the carbonic acid that is formed as a product of the reaction between carbon dioxide and water (present as vapor in exhaled breath). Exhaled and inhaled gas is allowed to pass across the surface of the paper and the clinician can then match the color to the color ranges printed on the device. It is usually recommended to wait six breaths before making a determination.
Decreasing EtCO₂ level

A decrease in the level of EtCO₂ from previous levels.

Possible causes:

- Increase in respiratory rate (hyperventilation)
- Increase in tidal volume (hyperventilation)
- Decrease in metabolic rate
- Fall in body temperature

Increasing EtCO₂ level

An increase in the level of EtCO₂ from previous levels.

Possible causes:

- Decrease in respiratory rate (hypoventilation)
- Decrease in tidal volume (hypoventilation)
- Increase in metabolic rate
- Rapid rise in body temperature (malignant hyperthermia)
Obstruction in breathing circuit or airway

Obstructed expiratory gas flow is noted as a change in the slope of the ascending limb of the capnogram (the expiratory plateau may be absent).

Possible causes:
- Obstruction in the expiratory limb of the breathing circuit
- Partially kinked or occluded artificial airway
- Presence of a foreign body in the upper airway
- Bronchospasm

Rebreathing

Elevation of the baseline indicates rebreathing (may also show a corresponding increase in EtCO₂).

Possible causes:
- Faulty expiratory valve
- Inadequate inspiratory flow
- Malfunction of a CO₂ absorber system
- Partial rebreathing circuits
- Insufficient expiratory time
- Partially kinked or occluded artificial airway
- Bronchospasm
Muscle relaxants (curare cleft)

Clefts are seen in the plateau portion of the capnogram. They appear when the action of the muscle relaxant begins to subside and spontaneous ventilation returns.

Characteristics:
- Depth of the cleft is inversely proportional to the degree of drug activity
- Position is fairly constant on the same patient, but not necessarily present with every breath

Endotracheal tube in the esophagus

Waveform evaluation:

A normal capnogram is the best available evidence that the ET tube is correctly positioned and that proper ventilation is occurring. When the ET tube is placed in the esophagus, either no CO₂ is sensed or only small transient waveforms are present.
Inadequately sealed endotracheal tube

The downward slope of the plateau blends in with the descending limb.

Possible causes:

• An endotracheal or tracheostomy tube without a cuff or one that is leaking or deflated
• An artificial airway that is too small for the patient

Faulty ventilator exhalation valve

Waveform evaluation:

• Baseline elevated
• Abnormal descending limb of capnogram
• Allows patient to rebreathe exhaled gas
Cardiogenic oscillations appear during the final phase of the alveolar plateau and during the descending limb. They are caused by the heart beating against the lungs.

Characteristics:
- Rhythmic and synchronized to heart rate
- May be observed in pediatric patients who are mechanically ventilated at low respiratory rates with prolonged expiratory times

Glossary of terms

Capnography
Measurement and graphic as well as numeric display of carbon dioxide.

Capnometry
Measurement and numeric display of carbon dioxide.

Dead space
Area of the lungs and airways (including artificial) that do not participate in gas exchange.

End-tidal CO₂ (EtCO₂)
Peak concentration of carbon dioxide occurring at the end of expiration.

Pulmonary perfusion
Blood flow through the lungs (pulmonary capillaries).
Glossary of terms (continued)

Shunt perfusion
Areas of the lung that are perfused with blood, but not ventilated.

Substrate metabolism
Oxidation of carbohydrate, lipid and protein for energy.

Ventilation-perfusion ratio (V/Q)
Ratio of ventilation (air flow) to perfusion (blood flow).